5 21 Honeycomb
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from
Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington to ...
, named for the length of the 3 branches of its Coxeter-Dynkin diagram.Coxeter, 1973, Chapter 5: The Kaleidoscope By putting spheres at its vertices one obtains the densest-possible packing of spheres in 8 dimensions. This was proven by
Maryna Viazovska Maryna Sergiivna Viazovska ( uk, Марина Сергіївна Вязовська, ; born 2 December 1984) is a Ukrainian mathematician known for her work in sphere packing. She is full professor and Chair of Number Theory at the Institute of M ...
in 2016 using the theory of
modular forms In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of ...
. Viazovska was awarded the
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award ho ...
for this work in 2022. This honeycomb was first studied by Gosset who called it a ''9-ic semi-regular figure'' (Gosset regarded honeycombs in ''n'' dimensions as degenerate ''n''+1 polytopes). Each vertex of the 521 honeycomb is surrounded by 2160 8-orthoplexes and 17280 8-simplicies. The
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
of Gosset's honeycomb is the semiregular 421 polytope. It is the final figure in the k21 family. This honeycomb is highly regular in the sense that its symmetry group (the affine _8 Weyl group) acts transitively on the ''k''-faces for ''k'' ≤ 6. All of the ''k''-faces for ''k'' ≤ 7 are simplices.


Construction

It is created by a
Wythoff construction In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction. Construction process ...
upon a set of 9
hyperplane In geometry, a hyperplane is a subspace whose dimension is one less than that of its ''ambient space''. For example, if a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyper ...
mirrors in 8-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram. : Removing the node on the end of the 2-length branch leaves the
8-orthoplex In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells ''4-faces'', 1792 ''5-faces'', 1024 ''6-faces'', and 256 ''7-faces''. It has two constr ...
, 611. : Removing the node on the end of the 1-length branch leaves the
8-simplex In geometry, an 8- simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is ...
. : The
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
is determined by removing the ringed node and ringing the neighboring node. This makes the 421 polytope. : The
edge figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or vertex of a polyhedron. Mark a point somewhere along each connected edge. Draw lines ...
is determined from the vertex figure by removing the ringed node and ringing the neighboring node. This makes the 321 polytope. : The face figure is determined from the edge figure by removing the ringed node and ringing the neighboring node. This makes the 221 polytope. : The cell figure is determined from the face figure by removing the ringed node and ringing the neighboring node. This makes the 121 polytope. :


Kissing number

Each vertex of this tessellation is the center of a 7-sphere in the densest packing in 8 dimensions; its
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
is 240, represented by the vertices of its
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
421.


E8 lattice

_8 contains _8 as a subgroup of index 5760. Both _8 and _8 can be seen as affine extensions of A_8 from different nodes: _8 contains _8 as a subgroup of index 270. Both _8 and _8 can be seen as affine extensions of D_8 from different nodes: The
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equ ...
of 521 is called the
E8 lattice In mathematics, the E lattice is a special lattice in R. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E root system. The normIn t ...
. The E8 lattice can also be constructed as a union of the vertices of two 8-demicube honeycombs (called a D82 or D8+ lattice), as well as the union of the vertices of three 8-simplex honeycombs (called an A83 lattice): : = ∪ = ∪ ∪


Regular complex honeycomb

Using a
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
coordinate system, it can also be constructed as a \mathbb^4 regular complex polytope, given the symbol 33333, and
Coxeter diagram Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
. Its elements are in relative proportion as 1 vertex, 80 3-edges, 270 33 faces, 80 333 cells and 1 3333
Witting polytope In 4-dimensional complex geometry, the Witting polytope is a regular complex polytope, named as: 3333, and Coxeter diagram . It has 240 vertices, 2160 3 edges, 2160 Möbius–Kantor polygon, 33 faces, and 240 Hessian polyhedron, 333 cells. It is s ...
cells.Coxeter Regular Convex Polytopes, 12.5 The Witting polytope


Related polytopes and honeycombs

The 521 is seventh in a dimensional series of
semiregular polytope In geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-transitive and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as ''The Semiregular Polyt ...
s, identified in 1900 by
Thorold Gosset John Herbert de Paz Thorold Gosset (16 October 1869 – December 1962) was an English lawyer and an amateur mathematician. In mathematics, he is noted for discovering and classifying the semiregular polytopes in dimensions four and higher, and ...
. Each member of the sequence has the previous member as its
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
. All facets of these polytopes are
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
s, namely
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
es and
orthoplex In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahed ...
es.


See also

*
E8 lattice In mathematics, the E lattice is a special lattice in R. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E root system. The normIn t ...
* 152 honeycomb * 251 honeycomb


Notes


References

*
Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington to ...
''The Beauty of Geometry: Twelve Essays'', Dover Publications, 1999, (Chapter 3: Wythoff's Construction for Uniform Polytopes) * * Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45* N.W. Johnson: ''Geometries and Transformations'', (2015) {{Honeycombs 9-polytopes